
Action Anticipation with RBF Kernelized
Feature Mapping RNN

Yuge Shi[0000−0003−1905−9320], Basura Fernando[0000−0002−6920−9916], and Richard
Hartley[0000−0002−5005−0191]

The Australian National University, Australia

Abstract. We introduce a novel Recurrent Neural Network-based algorithm for
future video feature generation and action anticipation called feature mapping RNN .
Our novel RNN architecture builds upon three effective principles of machine
learning, namely parameter sharing, Radial Basis Function kernels and adversar-
ial training. Using only some of the earliest frames of a video, the feature map-
ping RNN is able to generate future features with a fraction of the parameters
needed in traditional RNN. By feeding these future features into a simple multi-
layer perceptron facilitated with an RBF kernel layer, we are able to accurately
predict the action in the video.
In our experiments, we obtain 18% improvement on JHMDB-21 dataset, 6% on
UCF101-24 and 13% improvement on UT-Interaction datasets over prior state-
of-the-art for action anticipation.

Keywords: Human action prediction, novel Recurrent Neural Network, Radial
Basis Function kernel, Adversarial training

1 Introduction

Action anticipation (sometimes referred to as action prediction) is gaining a lot of
attention due to its many real world applications such as human-computer interac-
tion [2,33,30], sports analysis [3,4,56] and pedestrian movement prediction [9,21,18,5,46]
especially in the autonomous driving scenarios.

In contrast to most widely studied human action recognition methods, in action
anticipation, we aim to recognize human action as early as possible [39,23,28,42,49].
This is a challenging task due to the complex nature of video data. Although a video
containing a human action consists of a large number of frames, many of them are not
representative of the action being performed; large amount of visual data also tend to
contain entangled information about variations in camera position, background, relative
movements and occlusions. This results in cluttered temporal information and makes
recognition of the human action a lot harder. The issue becomes even more significant
for action anticipation methods, as the algorithm has to make a decision using only a
fraction of the video at the very start. Therefore, finding a good video representation that
extracts temporal information relevant to human action is crucial for the anticipation
model.

To over come some of these issues, we resort to use deep convolutional neural net-
works (CNNs) and take the deep feature on the penultimate layer of CNN as video

2 Y. Shi et al.

Fig. 1: Overview of Proposed feature mapping RNN : Given a frame extracted from
video data, the algorithm first passes the RGB image I(t) through a deep CNN to ac-
quire high level features of the image xt. The vector is then split into smaller segments
xi
t of equal length. Each scalar element in the segmented vector is used as input to a sin-

gle LSTM cell that produces the prediction of corresponding feature element in frame
(t+ k), where k ≥ 1. After all segments are processed with LSTMs, all the prediction
segments x̂i

t+k are concatenated back together to form x̂t+k, which contains high level
features of I(t+ k).

representation. Another motivation to use deep CNNs stems from the difficulty of gen-
erating visual appearances for future. Therefore, similar to Vondrick et al. [49], we
propose a method to generate future features tailored for action anticipation task: given
an observed sequence of deep CNN features, a novel Recurrent Neural Network (RNN)
model is used to generate the most plausible future features and thereby predicting the
action depicted in video data. An overview of this model can be found in Fig. 1.

The objective of our RNN is to map the feature vector at time t denoted by xt to the
future feature vector at (t+ k) denoted by xt+k. Because only a fraction of the frames
are observed during inference, the future feature generator should be highly regularized
to avoid over-fitting. Furthermore, feature generator needs to model complex dynamics
of future frame features.

This can be resolved by parameter sharing. Parameter sharing is a strong machine
learning concept that is being used by many modern leaning methods. Typically, CNNs
share parameters in the spatial domain and RNNs in the temporal dimension. In our
work, we propose to utilize parameter sharing in an unconventional way for RNN mod-
els by expanding it to the feature domain. This is based on the intuition that the CNN
feature activations are correlated to each other.

By utilizing parameter sharing across feature activations, our proposed RNN is
able to learn the temporal mapping from xt to xt+k with significantly fewer param-
eters. This greatly boosts the computational efficiency of the prediction model and
correspondingly shortens the response time. We call our novel RNN architecture fea-
ture mapping RNN .

To model complex dynamic nature of video data, we make use of a novel mapping
layer inside our RNN. In principle, the hidden state of the RNN captures the tempo-
ral information of observed sequence data. In our method, hidden state of the RNN is
processed by a linear combination of Gaussian Radial Basis Function (RBF) kernels to

Feature Mapping RNN 3

produce the future feature vector. While a linear model defines a simple hyperplane as
mapping functions, the kernelized mapping with RBF kernels can model complex sur-
faces and therefore has the potential of improving the prediction accuracy. In our work,
we also implement RBF kernels on the action classification multi-layer perceptron to
improve the performance of classifiers.

Ideally, we are interested in learning the probability distribution of future given
the past features. To learn this conditional distribution, inspired by the of Generative
Adversarial Networks [12], an adversarial approach is used to evaluate the cost of the
feature mapping RNN. The RNN is trained with an adversarial loss and re-constrictive
L2 loss. In this way, the model is optimized not only with the intention of reducing the
Euclidean distance between the prediction and ground truth, but also taking probability
distribution of the feature vector into consideration.

In a summary, our contributions are:
– We propose a novel RNN architecture that share parameters across temporal

domain as well as feature space.
– We propose a novel RBF kernel to improve the prediction performance of

RNNs.
– We demonstrate the effectiveness of our method for action anticipation task

beating state-of-the-art on standard benchmarks.

2 Related Work

The model proposed in this paper focuses on future video content generation for ac-
tion prediction and action anticipation [23,50,36,35,55,27,20,42,39,29,49,10]. In con-
trast to the widely studied action recognition problem, the action anticipation literature
focuses on developing novel loss functions to reduce the predictive generalization er-
ror [39,29,16] or to improve the generalization capacity of future content such as future
appearance [10] and future features [49]. The method propose in this paper also fo-
cuses on future content generation and therefore could further benefit from novel loss
functions as proposed in [39,29,16].

In the early days, Yu et al. [55] make use of spatial temporal action matching to
tackle early action prediction. Their method relies on spatial-temporal implicit shape
models. By explicitly considering all history of observed features, temporal evolution of
human actions is used to predict the class label as early as possible by Kong et al. [20].
Li et al. ’s work [27] exploits sequence mining, where a series of actions and object
co-occurrences are encoded as symbolic sequences. Soomro et al. [43] propose to use
binary SVMs to localize and classify video snippets into sub-action categories, and
obtain the final class label in an online manner using dynamic programming. In [50],
action prediction is approached using still images with action-scene correlations. Dif-
ferent from the above mentioned methods, our work is focused on action anticipation
from videos. We rely on deep CNNs along with a RNN that shares parameters across
both feature and time dimensions to generate future features. To model complex dy-
namics of video data, we are the first to make use of effective RBF kernel functions
inside RNNs for the action anticipation task.

On the other hand, feature generation has been studied with the aim of learning
video representation, instead of specifically for action anticipation. Inspired by natural

4 Y. Shi et al.

language processing technique [1], authors in [34] propose to predict the missing frame
or extrapolate future frames from an input video sequence. However, they demonstrate
this only for unsupervised video feature leaning. Other popular models include the un-
supervised encoder-decoder scheme introduced by [45] for action classification, proba-
bilistic distribution generation model by [25] as well as scene prediction learning using
object location and attribute information introduced by [8]. Research in recent years on
applications of Generative Adversarial Network on video generation have given rise to
models such as MoCoGAN [48], TGAN [40] and Walker et al. ’s work [53] on video
generation using pose as a conditional information. The mechanisms of these GAN vari-
ations are all capable of exploiting both the spatial and temporal information in videos,
and therefore have showed promising results in video generation.

Moreover, trajectory prediction [22], optical-flow prediction [52], path prediction [51,54]
and motion planning [11,19], sports forecasting [7], activity forecasting of [31] are also
related to our work. All these methods generate future aspects of the data. Our novel
RNN model, however, focuses on generating future features for action anticipation.

3 Approach

3.1 Overview

Similar to methods adopted by other action anticipation algorithms, our algorithm makes
predictions of action by only observing a fraction of video frames at the beginning of
a long video. The overall pipeline of our method is shown in Fig. 1. First, we extract
some CNN feature vectors from frames and predict the future features based on the past
features. Subsequently, a multilayer perceptron (MLP) is used to classify generated fea-
tures. We aggregate predictions from observed and generated features to recognize the
action as early as possible.

3.2 Motivation

Denote observed sequence of feature vectors up to time t by X = 〈x1, x2, x3, · · ·xt〉
and future feature vector we aim to produce by x̂t+k, where k ≥ 1 and xt ∈ Rd. We
are interested in modeling the conditional probability distribution of P (xt+k| x1, x2,
x3, · · · xt;Θ), where Θ denotes the parameters of the probabilistic model.

It is natural to use RNNs or RNN variants such as Long Short Term Memory
(LSTM) [14] to model the temporal evolution of the data. However, learning such a
mapping could lead to over-fitting since these methods tend not to utilise the temporal
coherence and the evolutionary nature of video data [32].

Furthermore, a naive CNN feature mapping using a LSTM from past to the future
is also prone to over-fitting. A LSTM with hidden state of dimensionality H and takes
feature vectors of dimensionality d as input uses parameters in the order of 4(dH+d2).
As an example, if we use the penultimate activations of Inception V3 [47] as feature
vectors (d = 2048), a typical LSTM (H = 512) would require parameters in the order
of 107. We believe that the effectiveness of such models can be largely improved by
utilising the correlation of high level activations of modern CNN architectures [47,13].

Feature Mapping RNN 5

Motivated by these arguments, we propose to train a LSTM model where parameters
are not only shared in the time domain, but also across feature activations. By doing so,
we aim to self-regularize the feature generation of the algorithm. We name our novel
architecture feature mapping RNN . Furthermore, to increase the functional capacity
of RNNs, we make use of Radial Basis Functions (RBF) to model temporal dynamics
of the conditional probability distribution P (xt+k | x1, x2, x3, · · · xt; Θ). These
mechanisms will be introduced in details in the following subsection.

3.3 Feature Mapping RNN with RBF Kernel Mapping

A traditional feature generation RNN architecture takes a sequence of vectors up to time
t as input and predicts the future feature vector x̂t+k. Typically, the following recurrent
formula is used to model the prediction:

ht = f(xt,ht−1; θ) (1)

Where ht is the hidden state (ht ∈ RH) which captures the temporal information of the
sequence and θ are the parameters of the recurrent formula. Then we utilize this hidden
state to predict the future feature vector xt+k using the following formula:

x̂t+k = ht ×W (2)

where W ∈ RH×D is the parameter that does the linear mapping to predict the future
feature vector.

As introduced previously, in our feature mapping RNN the parameters Θ are shared
across several groups of feature activations. This is achieved by segmenting the input
feature vector of dimensionality d into equal size sub-vectors of dimensionality D,
where D is referred to as feature step size.

Now let us denote the ith sub-feature vector of size D by xi
t. Intuitively, if we

concatenate all such sub-feature vectors in an end-to-end manner, we will be able to
reconstruct the original feature vector xt. The time sequence of data for the ith sub-
feature vector is now denoted by Xi = 〈 xi

1, x
i
2, x

i
3, · · ·xi

t 〉. If we process each
sequence Xi in units of xi

t with the RNN model in equation 1 and equation 2, we will
be able to predict xi

t+k and by concatenating them end-to-end, generate xt+k. This
approach reduces the number of parameters used in the RNN model from 4(dH + d2)
to 4(DH +D2), which results in a considerable boost in computational efficiency es-
pecially when D � d. However, the parameter complexity of the model would remain
polynomial and is relevant to multiple hyperparameters.

To further improve the efficiency of our model, we adopt an even bolder approach:
we propose to convert the sequence of vectors of Xi = 〈 xi

1, x
i
2, x

i
3, · · ·xi

t 〉 to a
sequence of scalars. Let us denote the j-th dimension of sub-vector xi

t by xi(j)t . Now in-
stead processing sequence of vectorsXi, we convert the sequenceXi to a new sequence
of scalars X

′ i = 〈 xi(1)1 , x
i(2)
1 , · · ·xi(D)

1 , x
i(1)
2 , x

i(2)
2 , · · · , xi(k)t , · · ·xi(D)

t 〉. Length of
the sequence of scalars X

′ i is equal to t × D and we generate d
D number of such se-

quences from each original sequence of feature vector X .

6 Y. Shi et al.

We then propose to process sequence of scalars using a RNN (LSTM) model. The
computation complexity is now linear, with number of parameters used in the recurrent
model (LSTM) reduced to 4(H + 1) and depends only on the hidden state size.

Again, given the current sequence of vectors X , we want to generate future feature
vector xt+k. In the our RNN model, this is translated to predicting sequence of scalars〈
x
i(1)
t+k, · · ·x

i(D)
t+k

〉
from sequence X

′ i for all sub-feature vectors i = 1 to d
D . Then we

merge all predicted scalars for time t+ k to obtain xt+k.
Therefore, mathematically our new RNN model that share the parameter over fea-

ture activations can be denoted by the following formula:

h
i(l)
t = f(x

i(l)
t ,hi(l)

t−1;Θ
′
) (3)

where Θ
′

is the new parameter set of the RNN (LSTM) and the future l-th scalar of i-th
sub-feature vector is given by:

x̂
i(l)
t+k = h

i(l)
t · w

′
. (4)

To further improve the functional capacity of our feature mapping RNN , we make
use of Radial Basis Functions (RBF). Instead of using a simple linear projection of the
hidden state to the future feature vector, we propose to exploit the more capable Radial
Basis Functional mapping. We call this novel RNN architecture the RBF kernelized
feature mapping RNN , denoted by the following formula:

x̂
i(l)
t+k =

n∑
j=1

αl
j exp

[
−

(h
i(l)
t − µl

j)
2

σl
j
2

]
(5)

where µl
j , σl

j and αl
j are parameters learned during training and n the number of RBF

kernels used. These parameters are shared across all sub-feature vectors. The future fea-
ture vector x̂i

t+k is calculated as the linear combination of RBF kernels outputs. Since
the RBF kernels are better at modeling complex planes in the feature space, this func-
tional mapping is able to accurately capture more complicated dynamics. Implementing
the kernalised RBF on our feature mapping RNN enables the model to so with fewer
parameters than classical RNNs.

Note that the method we have presented here only uses non-overlapping feature-
sub-vectors, i. e. no overlapping exists between 2 consecutive sub-vectors. However,
overlapping feature-sub-vectors can be used to improve the robustness of feature gen-
eration. Therefore, instead of using a non-overlapping feature stride of D, we use an
overlapping stride of size S. In this case, we take the average between all overlapping
parts of 2 consecutive sub-vectors to obtain x̂i(l)t+k.

3.4 Training of feature mapping RNN

Data generation, especially visual data generation with raw images, has remained a
challenging problem for years mainly due to the absence of suitable loss function. The
most commonly used function for this task is the L2 loss. However, it works under the

Feature Mapping RNN 7

assumption that data is drawn from a Gaussian distribution, which makes the loss func-
tion ineffective when dealing with data that follows other distributions. As an example,
if there exists only two equally possible value v1 and v2 for a pixel, the possibility for
vavg = (v1 + v2)/2 to be the true value for that pixel is minimal. However, vavg will
be assigned to the output in a neural network that uses L2 loss to evaluate the cost.
This property of the L2 loss function causes a ”blurry” effect on the generated output.
Similar observations can be seen for feature vector generation.

Recent developments in Generative Adversarial Networks address this issue suc-
cessfully [12]. Traditional GAN consists of 2 CNNs, one of them is named gener-
ator (denote as G) and the other discriminator (denote as D). The GAN effectively
learns the probabilistic distribution of the original data, and therefore eliminates the
”blockiness” effect caused by L2 loss function. Here, we propose to train the fea-
ture mapping RNN algorithm using a combination of L2 and adversarial loss, which
is realized by implementing the feature mapping RNN as the generator denoted by
G : xi

t → x̂i
t+k. By doing so, we are able to produce prediction that is both accurate

and realistic.
L2 loss: The L2 loss is defined as the mean squared error between the generated

feature and the real feature vector of the future frame given as follows:

LG2 (xt) = ||xi
t+k − x̂

i
t+k|| = ||x

i
t+k − G(x

i
t)||. (6)

Adversarial loss: We use generator adversarial loss proposed by [12] where we train
G so that D believes G(xi

t) comes from the dataset, at which point D(G(xi
t)) = 1. The

loss function is defined as:

LGadv = − log(D(G(xi
t))). (7)

By adding this loss to our objective function, the RNN is encouraged to generate feature
prediction with probabilistic distribution similar to the original data. Finally, the loss
function of our RNN generator G is given by:

LG = λ1LG2 + λ2LGadv. (8)

The discriminator is trained to judge whether its inputs are real or synthetic. The objec-
tive is to output 1 when given input is the real data xi

t+k and 0 when input is generated
data G(xi

t). Therefore, the discriminator loss is defined as:

LD = −log(D(xi
t+k))− log(1−D(G(x

i
t))). (9)

3.5 Action classifier and inference

To evaluate the authentication of predicted features generated by the feature matching
RNN, we again use the frame features to train a 2-layer MLP appended with a RBF
kernel layer (equation 5) to classify videos as early as possible. Illustration of our RBF
kernelized MLP is shown in Fig 2. The classification loss is evaluated using a cross-
entropy loss. Feature mapping RNN and the action classification MLP is trained sep-
arately. One might consider training both MLP and the feature mapping RNN jointly.
However, in terms of performance, we did not see that much of advantage.

8 Y. Shi et al.

Fig. 2: Illustration of RBF keneralized
multilayer perceptron. Fig. 3: Testing Procedure of Fea-

ture Mapping RNN

During inference, we take advantage of all observed and generated features to in-
crease the robustness of the results. Accuracy is calculated by performing temporal
average pooling on all predictions (see Fig 3).

4 Experiments

4.1 Datasets

Three datasets are used to evaluate the performance of our model, namely UT-Interaction
[37], JHMDB-21 [17] and UCF101-24 [44]. We follow the standard protocols for each
of the datasets in our experiments. We select these datasets because they are the most
related to action anticipation task that has been used in prior work [39,35].
UT-Interaction The UT-Interaction dataset (UTI) is a popular human action recog-
nition dataset with complicated dynamics. The dataset consists of 6 types of human
interactions executed under different backgrounds, zoom rates and interference. It has
a total of 20 video sequences split into 2 sets. Each video is of approximately 1 minute
long, depicting 8 interactions on average. The available action classes include hand-
shaking, pointing, hugging, pushing, kicking and punching. The performance evalu-
ation methodology requires the recognition accuracy to be measured using a 10-fold
leave-one-out cross validation per set. The accuracy is evaluated for 20 times while
changing the test sequence repeatedly and final result is yielded by taking the average
of all measurements.
JHMDB-21 JHMDB-21 is another challenging dataset that contains 928 video clips of
21 types of human actions. Quite different from the UT-interaction where video clips of
different actions are scripted and shot in relatively noise-free environments, all videos in
JHMDB-21 are collected from either movies or online sources, which makes the dataset
a lot more realistic. Each video contains an execution of an action and the dataset is split
into 3 sets for training, validation and testing.

Feature Mapping RNN 9

UCF101-24 UCF101-24 is a subset of UCF101. The dataset consists of more than
3000 videos from 24 action classes of UCF101. Since all the videos are collected from
YouTube, the diversity of data in terms of action types, backgrounds, camera motions,
lighting conditions etc are guaranteed. In addition, each video depicts up to 12 actions
of the same category with different temporal and spatial features, which makes it one
of the most challenging dataset to date.

4.2 Implementation Details

Feature Mapping RNN The Feature Mapping RNN is trained with batch size of 128,
using a hidden size (H) of 4 in all experiments unless otherwise specified. The default
dimensionality of feature sub vector referred to as feature step size(D) is set to 128. We
make use of six RBF kernels within the RBF kernelized feature mapping RNN . Feature
stride is set to 64 and weight of the adversarial loss (λ1) is set to 1 and the weight for
L2 loss is set to 10 (i. e. λ2).
Action classifier MLP The a simple two layer MLP classifier consists of two hidden
layers with 256 and 128 activation respectively. We also use RBF kernels along with
the MLP where number of kernels set to 256. MLP is trained with batch size of 256.
Training and Testing Procedures We use pre-trained Inception V3 [47] penultimate
activation as the frame feature representation. The dimensions of each feature vector is
2048 (d = 2048). The action classification MLP is trained on the feature vectors from
the training split of the datasets. These features are also used to train our feature map-
ping RNN to generate future features. Both models are trained with learning rate 0.001
and exponential decay rate 0.9.
Protocols Following the experimental protocol [39,35], we used only the first r% (50%
for UT-Interaction and 20% for JHMDB-21) of the video frames to predict action class
for each video. To utilise our model, we generate extra p% (referred to as prediction
percentage) of the video features using our RBF kernalized feature mapping RNN .
Therefore, we make use of (r+p)% feature vectors of the original video length to make
the final prediction. To generate the next future feature at test time, we recursively apply
our feature mapping RNN given all previous features (including the generated ones).
We then use our action classification MLP to predict the action label using max pooling
or simply average the predictions. This procedure is demonstrated more intuitively in
Fig.3.

4.3 Comparison to State-of-the-Art

We compare our model to the state-of-the-art algorithms for action anticipation task on
the JHMDB-21 dataset. Results are shown in Table 1. Our best algorithm (denoted as
fm+RBF+GAN+Inception V3 in the table) outperforms the state-of-the-art by 18%, and
we can clearly see that the implementation of kernel SVM and adversarial training im-
proves the accuracy by around 3 to 4%. In addition, to show the progression of how our
method is able to outperform the baseline by such a large margin, we also implemented
the Feature Mapping RNN on top of VGG16 so that the deep CNN pre-processing is
consistent with other methods in Table 1. The fm+VGG16 entry in the table shows an

10 Y. Shi et al.

Table 1: Comparison of our model against
state-of-the-arts on JHMDB-21 dataset
for action anticipation. We follow the pro-
tocol of JHMDB-21 for action anticipa-
tion and predictions are made from using
only 20% of video sequence.

Method Accuracy

Others

ELSTM [39] 55%
Within-class Loss [28] 33%
DP-SVM [42] 5%
S-SVM [42] 5%
Where/What [43] 10%
Context-fusion [16] 28%

Ours

fm+VGG16 63%
fm+kSVM+GAN+VGG16 67%
fm+Inception V3 70%
fm+RBF+GAN+Inception V3 73%

Table 2: Comparison of our model against
state-of-the-arts on UT-Interaction dataset
for action anticipation. Following pro-
tocol of UT-Interaction, predictions are
made from using only 50% of video se-
quence.

Method Accuracy
ELSTM [39] 84%
Within-class Loss [28] 48%
Context-fusion [16] 45%
Cuboid Bayes [35] 25%
I-BoW [35] 65%
D-BoW [35] 70%
Cuboid SVM [38] 32%
BP-SVM [26] 65%

Ours 97%

8% improvement from baseline ELSTM, which is purely influenced by the implemen-
tation of Feature Mapping RNN .

Experiments are also carried out on the two other mentioned datasets, where our best
method outperforms the state-of-the-art by 13% on UT-Interaction and 6% on UCF101-
24, as shown in Table 2 and Table 3 respectively.

We believe these significant improvements suggests the effectiveness of two main
principles, the parameter sharing and expressive capacity of RBF functionals. To further
investigate the impact of each component, we perform a series of experiments in the
following sections.

Table 3: Comparison of our model against state-of-the-arts on UCF101-24 dataset for
action anticipation. Again, predictions are made from using only 50% of video se-
quence.

Method Accuracy
Temporal Fusion [6] 86%
ROAD [41] 90%
ROAD + BroxFlow [41] 92%

Ours 98%

4.4 Analysis

In this section we compare the influence of different components of our RBF kernelized
feature mapping RNN . As shown in Table 4, we compare following variants of our
RNN model, including:

(a) Feature Mapping RNN : use only L2 loss to train the Feature Mapping RNN ;

Feature Mapping RNN 11

(b) Feature Mapping RNN +RBF: our RNN with kernalised RBF, still only using
L2 loss;
(c) Feature Mapping RNN + RBF + GAN: RBF kernelized feature mapping RNN
with adversarial loss.

Apart from the Feature Mapping RNN -based models, we also conduct experiments on
the following method as comparisons to our model:

(d) Linear: a matrix of size D × D is used for feature generation (D is dimension
of input feature);
(e) Vanilla LSTM: generate future action features with traditional vanilla LSTM. L2

loss is used to train it;
(f) Vanilla LSTM + RBF: vanilla LSTM with kernalised RBF, using only L2 loss;
(g) Vanilla LSTM + RBF + GAN: RBF kernalized vanilla LSTM with added ad-
versarial loss.

Note that all the results are obtained using features extracted by Inception V3 network,
and the accuracy are acquired using max pooling at prediction percentage p = 50%.

Table 4: Comparison of different approach on JHMDB-21 dataset
Method Accuracy
Linear 62.7%
Vanilla LSTM 66.3%
Vanilla LSTM + RBF 67.9%
Vanilla LSTM + RBF + GAN -
Feature Mapping RNN 72.2%
Feature Mapping RNN + RBF 72.8%
Feature Mapping RNN + RBF + GAN 73.4%

The results in Table 4 shows the proposed scheme outperforms the linear model sig-
nificantly while using fewer parameters. Most interestingly, the feature mapping RNN out-
performs vanilla LSTM by almost 6% indicating the impact of parameter sharing in
the feature space. We can also conclude from Table 4 that the application of adversar-
ial loss as well as RBF kernel layers encourages the model to generate more realistic
future features, which is reflected by the improvement in accuracy with Feature Map-
ping RNN +RBF and Feature Mapping RNN +RBF+GAN. It is also shown in the Table
4 that vanilla LSTM trained with RBF kernel yields almost 2% higher accuracy than
plain vanilla LSTM, which proves further that the RBF layer is something the baseline
can benefit from. Regrettably, the vanilla LSTM with adversarial training model failed
to stabilise due to large number of parameters needed in the LSTM cells to reconstruct
the original feature distribution.

The influence of RBF kernalized feature mapping RNN is quite distinctive. If we
compare the red curve to the green one, we can see that the discrepency between them
becomes larger as the prediction percentage increases. This indicates that the RBF ker-
nalized feature mapping RNN generate more accurate future features in the long term,
and hence it is a more robust model than plain feature mapping RNN . Comparing the
red and green curve to the orange and blue one, we can also conclude that the adversarial

12 Y. Shi et al.

Fig. 4: Prediction accuracy without pool-
ing for JHMDB-21 dataset at different
video prediction percentages p. RBF ker-
nalized Feature mapping RNN is trained
using adversarial loss is able to achieve
the highest stable accuracy.

Fig. 5: Prediction accuracy evaluated at
different feature step sizes on JHMDB-21
dataset. The accuracy plotted in the image
is found by implementing feature step size
betweenD = 8 to 2048 with increment of
8 on the model and the rolling average is
taken among every 16 measurements. No
temporal pooling is used.

loss assist the RNN training in a similar way. Even without the assistance of GAN loss
and RBF kernel, the feature mapping RNN still performs better than liner projection
RNN.

4.5 Influence of Hyper-parameters

Feature Step Size The accuracy of the generated data indicates the existence of strong
correlations between theD-dimensional segments of the feature vectors. By default, we
resort to feature step size of 128 (D = 128). In order to further explore this property, we
experimented with different feature step sizes. In Fig.5, we plot the recognition accuracy
against feature step size. We observe that small feature step size guarantees effective
feature generation. Specifically, the prediction remains above 70% when feature step
size is smaller than 200. This phenomena can be explained by the intuition that when
feature step size is large, the model tries to generalize a large set of features with mixed
information at one time step, which results in degraded performance.

It is also interesting to note that the prediction accuracy oscillates drastically as the
feature step size exceeds 250. This indicates that perhaps the feature vector summarizes
information of the original image in fixed-size clusters, and when we attempt to break
these clusters by setting different feature step size, the information within each time
step lacks continuity and consistency, which subsequently compromises the prediction
performance.

Although smaller feature step size builds a more robust model, the training time with
feature step size 16 takes only half the amount of time of training with step size 4, with
no compromise on prediction accuracy. Therefore, it might be beneficial sometimes to
choose a larger feature step size to save computational time.

Feature Mapping RNN 13

Table 5: Prediction accu-
racy at different feature
stride size (S)

Interval Size Accuracy
S = 4 74.3%
S = 8 73.8%
S = 16 74.3%
S = 32 73.2%
S = 64 73.2%
S = 128 72.4%

Table 6: Prediction accu-
racy using LSTM cells
with different state size
(H).
Hidden State Size Accuracy

H = 2 71.7%
H = 4 73.2%
H = 8 72.7%
H = 16 73.2%
H = 32 73.2%
H = 64 73.8%

Table 7: Prediction accu-
racy using different num-
ber of RBF kernels.

No. of Kernels Accuracy
k = 4 72.7%
k = 8 72.7%
k = 16 73.3%
k = 32 73.3%
k = 64 72.7%
k = 128 73.8%
k = 256 72.2%

Interval SizeIn this section we experiment the effect of overlapping sub-feature vectors
on our RBF kernalized feature mapping RNN . Recall that the feature mapping RNN is
denoted by G : xi

t → x̂i:
t+k. Instead of incriminating i by the multiple of feature step

size D, in an attempt to improve the prediction accuracy, we define an feature stride S
that is smaller than D. The prediction accuracy of Feature Mapping RNN with several
different feature stride value is shown in Table 5.

LSTM state size This section aims at investigating the influence of LSTM cell’s hid-
den state size (H) on the model’s performance. Since the hidden state stores essential
information of all the input sequence data, it is common to consider it as the ”memory”
of the RNN. It is intuitive to expect an improvement in performance when we increase
the size of the hidden state up to some extent.

However, the results in Table 6 shows that increasing the LSTM state size does not
have much effect on the prediction accuracy, especially when the state size becomes
larger than 8. This is because in the proposed feature mapping RNN model, each LSTM
cell takes only one scalar as input, as opposed to the traditional RNN cells that process
entire vectors. As the hidden state size is always greater than the input size (equal to
1), it is not surprising that very large H does not have much influence on the model
performance.

Number of RBF Kernels In this section we study the influence of number of Gaus-
sian surfaces used in feature mapping RNN . We calculate prediction accuracy while
increasing the number of Gaussian kernels from 21 to 28. Results are as shown in Ta-
ble 7. The results show a general trend of increasing prediction performance as we add
more number of kernels, with the highest accuracy achieved at when k = 128. How-
ever, result obtained when k = 256 is worse than when k = 4. This phenomena could
be explained by over-fitting, resulted from RBF kernel’s strong capability of modeling
temporal dynamics of data with complex boundaries.

Conclusions for hyper-parameters tuning The conclusion from these experiments is
that the model is not too sensitive to the variation of these hyper-parameters in general,
which demonstrates its robustness. Results further demonstrated the computational effi-
ciency of our approach. Since it is possible to effectively train the model with very few
parameters, it can be stored on mobile devices for fast future action anticipation.

14 Y. Shi et al.

5 Conclusions

The proposed RNN which uses a very few parameters outperforms state-of-the-art al-
gorithms on action anticipation task. Our extensive experiments indicates the model’s
ability to produce accurate prediction of future features only observing a fraction of
the features. Furthermore, our RNN model is fast and consumes fraction of the mem-
ory which makes it suitable for real-time execution on mobile devices. Proposed fea-
ture mapping RNN can be trained with and without lables to generate future features.
Our feature generator does not use class level annotations of video data. Therefore,
in principle, we can increase the robustness of the model utilizing large amount of
available unlabelled data. The fact that the model is able to generate valid results us-
ing very few parameters provides strong proofs for the existence of inner-correlation
between deep features, which is a characteristic that can have implications on many
related problems such as video tracking, image translation, and metric learning.

In addition, by appending a RBF layer to the RNN, we observe significant improve-
ment in prediction accuracy. However, it was also noted that over-fitting occurs when
the model is implemented with too many kernel RBFs. To fully explore functional ca-
pacity of RBF function, in future studies, we aim to implement kernel RBFs on fully
connected layer of popular deep CNN models such as ResNet [13], AlexNet [24] and
DenseNet [15].

In conclusion, proposed RBF kernalized feature mapping RNN demonstrates the
power of parameter sharing and RBF functions in a challenging sequence learning task
of video action anticipation.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model.
Journal of machine learning research 3(Feb), 1137–1155 (2003) 4

2. Dix, A.: Human-computer interaction. In: Encyclopedia of database systems, pp. 1327–1331.
Springer (2009) 1

3. Duan, L.Y., Xu, M., Chua, T.S., Tian, Q., Xu, C.S.: A mid-level representation framework
for semantic sports video analysis. In: 2003 ACM International Conference on Multimedia.
pp. 33–44. ACM (2003) 1

4. Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic soccer video analysis and summarization.
IEEE Transactions on Image processing 12(7), 796–807 (2003) 1

5. Enzweiler, M., Gavrila, D.M.: Integrated pedestrian classification and orientation estimation.
In: 2010 IEEE Conference on Computer Vision and Pattern Recognition. pp. 982–989 (2010)
1

6. Fan, Z., Lin, T., Zhao, X., Jiang, W., Xu, T., Yang, M.: An online approach for gesture
recognition toward real-world applications. In: Zhao, Y., Kong, X., Taubman, D. (eds.) Image
and Graphics. pp. 262–272. Springer International Publishing, Cham (2017) 10

7. Felsen, P., Agrawal, P., Malik, J.: What will happen next? forecasting player moves in sports
videos. In: 2017 IEEE International Conference on Computer Vision (2017) 4

8. Fouhey, D.F., Zitnick, C.L.: Predicting object dynamics in scenes. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2027–2034 (2014).
https://doi.org/10.1109/CVPR.2014.260 4

https://doi.org/10.1109/CVPR.2014.260

Feature Mapping RNN 15

9. Gandhi, T., Trivedi, M.M.: Image based estimation of pedestrian orientation for improving
path prediction. In: 2008 IEEE Intelligent Vehicles Symposium. pp. 506–511 (2008) 1

10. Gao, J., Yang, Z., Nevatia, R.: Red: Reinforced encoder-decoder networks for action antici-
pation. arXiv preprint arXiv:1707.04818 (2017) 3

11. Gong, H., Sim, J., Likhachev, M., Shi, J.: Multi-hypothesis motion planning for visual object
tracking. In: 2011 IEEE International Conference on Computer Vision. pp. 619–626 (Nov
2011). https://doi.org/10.1109/ICCV.2011.6126296 4

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing
systems. pp. 2672–2680 (2014) 3, 7

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016) 4, 14

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–
1780 (1997) 4

15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (2017)
14

16. Jain, A., Singh, A., Koppula, H.S., Soh, S., Saxena, A.: Recurrent neural networks for driver
activity anticipation via sensory-fusion architecture. In: 2016 IEEE International Conference
on Robotics and Automation. pp. 3118–3125 (2016) 3, 10

17. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recog-
nition. In: 2013 IEEE International Conference on Computer Vision. pp. 3192–3199 (Dec
2013) 8

18. Keller, C.G., Gavrila, D.M.: Will the pedestrian cross? a study on pedestrian path prediction.
2014 IEEE Transactions on Intelligent Transportation Systems 15(2), 494–506 (2014) 1

19. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity Forecasting, pp. 201–214.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012) 4

20. Kong, Y., Kit, D., Fu, Y.: A discriminative model with multiple temporal scales for action
prediction, pp. 596–611 (2014) 3

21. Kooij, J.F.P., Schneider, N., Flohr, F., Gavrila, D.M.: Context-based pedestrian path predic-
tion. In: 2014 European Conference on Computer Vision. pp. 618–633. Springer (2014) 1

22. Kooij, J.F.P., Schneider, N., Flohr, F., Gavrila, D.M.: Context-Based Pedestrian Path Predic-
tion, pp. 618–633. Springer International Publishing, Cham (2014) 4

23. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for re-
active robotic response. IEEE Transactions on Pattern Analysis and Machine Intelligence
38(1), 14–29 (Jan 2016). https://doi.org/10.1109/TPAMI.2015.2430335 1, 3

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Ad-
vances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates,
Inc. (2012) 14

25. Lampert, C.H.: Predicting the future behavior of a time-varying probability distribution. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition. pp. 942–950 (2015).
https://doi.org/10.1109/CVPR.2015.7298696 4

26. Laviers, K., Sukthankar, G., Aha, D.W., Molineaux, M., Darken, C., et al.: Improving of-
fensive performance through opponent modeling. In: 2009 AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (2009) 10

27. Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. 2014
IEEE transactions on pattern analysis and machine intelligence 36(8), 1644–1657 (2014) 3

28. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in lstms for activity detection and
early detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp.
1942–1950 (2016). https://doi.org/10.1109/CVPR.2016.214 1, 10

https://doi.org/10.1109/ICCV.2011.6126296
https://doi.org/10.1109/TPAMI.2015.2430335
https://doi.org/10.1109/CVPR.2015.7298696
https://doi.org/10.1109/CVPR.2016.214

16 Y. Shi et al.

29. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in lstms for activity detection and
early detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp.
1942–1950 (2016) 3

30. MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction.
Human-computer interaction 7(1), 91–139 (1992) 1

31. Mahmud, T., Hasan, M., Roy-Chowdhury, A.K.: Joint prediction of activity labels and start-
ing times in untrimmed videos. In: 2017 IEEE International Conference on Computer Vision.
pp. 5784–5793 (2017) 4

32. Mobahi, H., Collobert, R., Weston, J.: Deep learning from temporal coherence in video. In:
2009 International Conference on Machine Learning. pp. 737–744. ACM (2009) 4

33. Newell, A., Card, S.K.: The prospects for psychological science in human-computer interac-
tion. Human-computer interaction 1(3), 209–242 (1985) 1

34. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language)
modeling: a baseline for generative models of natural videos. CoRR abs/1412.6604 (2014)
4

35. Ryoo, M.S.: Human activity prediction: Early recognition of ongoing activities from stream-
ing videos. In: 2011 International Conference on Computer Vision. pp. 1036–1043 (Nov
2011). https://doi.org/10.1109/ICCV.2011.6126349 3, 8, 9, 10

36. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: Video structure compari-
son for recognition of complex human activities. In: 2009 IEEE International Conference on
Computer Vision. pp. 1593–1600 (2009). https://doi.org/10.1109/ICCV.2009.5459361 3

37. Ryoo, M.S., Aggarwal, J.K.: UT-Interaction Dataset, ICPR con-
test on Semantic Description of Human Activities (SDHA).
http://cvrc.ece.utexas.edu/SDHA2010/Human Interaction.html (2010) 8

38. Ryoo, M., Chen, C.C., Aggarwal, J., Roy-Chowdhury, A.: An overview of contest on seman-
tic description of human activities (sdha) 2010. In: Recognizing Patterns in Signals, Speech,
Images and Videos, pp. 270–285. Springer (2010) 10

39. Sadegh Aliakbarian, M., Sadat Saleh, F., Salzmann, M., Fernando, B., Petersson, L., An-
dersson, L.: Encouraging lstms to anticipate actions very early. In: 2017 IEEE International
Conference on Computer Vision (Oct 2017) 1, 3, 8, 9, 10

40. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value
clipping. In: 2017 IEEE International Conference on Computer Vision. vol. 2, p. 5 (2017) 4

41. Singh, G., Saha, S., Sapienza, M., Torr, P., Cuzzolin, F.: Online real time multiple spatiotem-
poral action localisation and prediction (2017) 10

42. Soomro, K., Idrees, H., Shah, M.: Online localization and prediction of actions and interac-
tions. CoRR abs/1612.01194 (2016) 1, 3, 10

43. Soomro, K., Idrees, H., Shah, M.: Predicting the where and what of actors and actions
through online action localization. In: 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition. pp. 2648–2657 (2016) 3, 10

44. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions classes from
videos in the wild. CoRR abs/1212.0402 (2012) 8

45. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video represen-
tations using lstms. In: 2015 International Conference on Machine Learning. pp. 843–852
(2015) 4

46. Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared
images and histograms of oriented gradients. In: 2006 IEEE Intelligent Vehicles Symposium.
pp. 206–212. IEEE (2006) 1

47. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception ar-
chitecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308 4, 9

https://doi.org/10.1109/ICCV.2011.6126349
https://doi.org/10.1109/ICCV.2009.5459361
https://doi.org/10.1109/CVPR.2016.308

Feature Mapping RNN 17

48. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and content
for video generation. arXiv preprint arXiv:1707.04993 (2017) 4

49. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled
video. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp. 98–106
(2016) 1, 2, 3

50. Vu, T.H., Olsson, C., Laptev, I., Oliva, A., Sivic, J.: Predicting Actions from Static Scenes,
pp. 421–436. Springer International Publishing, Cham (2014) 3

51. Walker, J., Gupta, A., Hebert, M.: Patch to the future: Unsupervised visual prediction. In:
2014 IEEE Conference on Computer Vision and Pattern Recognition. pp. 3302–3309 (2014).
https://doi.org/10.1109/CVPR.2014.416 4

52. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In:
2015 IEEE International Conference on Computer Vision. pp. 2443–2451 (Dec 2015).
https://doi.org/10.1109/ICCV.2015.281 4

53. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by gener-
ating pose futures. In: 2017 IEEE International Conference on Computer Vision. pp. 3352–
3361 (2017) 4

54. Xie, D., Todorovic, S., Zhu, S.C.: Inferring dark matter and dark energy from videos.
In: 2013 IEEE International Conference on Computer Vision. pp. 2224–2231 (Dec 2013).
https://doi.org/10.1109/ICCV.2013.277 4

55. Yu, G., Yuan, J., Liu, Z.: Predicting human activities using spatio-temporal structure of in-
terest points. In: 2012 ACM International Conference on Multimedia (2012) 3

56. Zhong, D., Chang, S.F.: Structure analysis of sports video using domain models. In: 2001
IEEE International Conference on Multimedia & Expo. Citeseer (2001) 1

https://doi.org/10.1109/CVPR.2014.416
https://doi.org/10.1109/ICCV.2015.281
https://doi.org/10.1109/ICCV.2013.277

